Trajectory Evaluation of Rotor-Flying Robots Using Accurate Inverse Computation Based on Algorithm Differentiation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV

This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...

متن کامل

Inverse control and stabilization of free-flying flexible robots

SUMMARY The question of control and stabilization of flexible space robots is considered. Although, this approach is applicable to space robots of other configurations, for simplicity, a flexible planar two-link robot, mounted on a rigid floating platform, is considered. The robotic arm has two revolute joints and its links undergo elastic deformation in the plane of rotation. Based on nonlinea...

متن کامل

Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control Algorithm

In this paper, a novel Model Reference Adaptive Control (MRAC)-based hybrid control algorithm is presented for the trajectory tracking of a tri-rotor Unmanned Aerial Vehicle (UAV). The mathematical model of the tri-rotor is based on the Newton–Euler formula, whereas the MRAC-based hybrid controller consists of Fuzzy Proportional Integral Derivative (F-PID) and Fuzzy Proportional Derivative (F-P...

متن کامل

Evolving Vision-Based Flying Robots

We describe a new experimental approach whereby an indoor flying robot evolves the ability to navigate in a textured room using only visual information and neuromorphic control. The architecture of a spiking neural circuit, which is connected to the vision system and to the motors, is genetically encoded and evolved on the physical robot without human intervention. The flying robot consists of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2014

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2014/464056